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ELASTIC EQUILIBRIUM OF A COMPOSITE PLANE CONTAINING AN 
ARBITRARILY ORIENTED THIN ELASTIC INCLUSION* 

A. A. EVTUSHENKO 

The integral Mellin transform is used to study the stress-strain state of a piece- 
wise homogeneous plane consisting of two bonded, isotropic half-planes, one of 
them containing an elastic, thin-walled inclusion of finite length. Solutions of 
the problems of stress concentration near an elastic inclusion in a homogeneous 
plane /l/ and the problem of a mathematical cut in a piecewise homogeneous plane 
/2/ are found to be particular cases of the results obtained in the present paper. 
However, unlike in /2/, the choice of the path around the pole in the process of 
estimating the integral equations obtained, is substantiated. 

When the mass forces are absent, the solution of the plane problem of the theory of 
elasticity reduces to the problem of obtaining a general solution of the following different- 
ial equations /3/: 

VQ=O, CZ$=O, +-(r$)=V$ (1) 

In a polar &J-coordinate system the stresses {z,~,r~a,~,,) and displacements {u,, %I] are ex- 
pressed in terms of the functions cp and Zc, by the relations 

where x = 3-h for a plane deformation, x = (3-v)/ (1 + v) for the generalized, plane stress 
state p = El [2 (1 + v)l, E, and v are the Young's modulus and the Poisson's ratio, respectiv- 
ely. 

The solution of the problem dealing with the influence of an elastic thin-walled inclus- 
ion inthe stress-strain state of a piecewise homogeneous plane under a given external load 

(Fig-l) can be regarded, within the limits of the linear theory of 
elasticity, as a superposition of the solutions of two problems. The 
problems are the first boundary value problem for a composite plane 
without an inclusion (we denote the corresponding quantities by the 
zero superscript), and the mixed boundary value problem for a piece- 
wise homogeneous plane with a mathematical cut along the segment [a, b] 
coinciding with the middle line of the inclusion (we denote the cor- 
responding quantities by an asterisk) 

ul* (r, n / 2) = (J,* (r, R / 2), vl* (r, n / 2) = us* (r, 3t / 2) 
(3) 

ur* (r, 3.77~ 12) = as* (r, --IT /2), VI* (r, 3x 12) = va* (r, 

--n/2), o< rem 
Fig.1 

up* (r, B. * ) = o&, % * ) - up0 (r., e,) (4) 

up* (r, BO& ) = v, (r, 8, * ) - up0 (r, e,), a < r < b 

The plus sign in the relations(4) corresponds to p = 2 and the minus sign to p = 3, and the 
indices 1,2 and 3 denote the quantities belonging to one of the three wedges 

1) (CLl? Xl)> % m < e < % n; 2) (PG,), 8, < 8 <l&n; 3) (ha, -4 fl< 8 c e. 

of which the elastic body in question is composed. 
The assumption that the inclusion is thin, enables us to assert that its presence is 

equivalent to the appearance of the stress and displacement discontinuities at the middleline 
of the interlayer 
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oa(r,80+)-~3(rl%-)= 
fl W + if2 (4, a<r<b 

0, O<r<a, b<r<m 

v2 (r, 90 +) -v3 (r, 00 -_) = 
f3 (r) + ifa WV a < r < b 

0, Q<r<a, b<r<w 

(5) 

and we have 

~fj(r)&=Cj 

a 

(6) 

where C’ (j = 1, . . ., 4) denote known real constants /l/. 

We define the Mellin transform of the function f(r), defined and regular in the range 

O<r<m, and its inverse transform, as follows /4/: 

m 

P(s)=M[f.s]=_S:f(r)r’-ldr, f(r)=&‘ImF(s)i’ds (7) 

0 c-ia 

Here the constant c is chosen from the condition of absolute integrability of r’-‘/(r) on (0, m). 
Applying the transform (7) to (1) and (2) we obtain, for the case of a wedge of an arbitrary 

angle 8, 

M [r%, sl = 2i (s + I)[Asei,e + B (s + l)e’(~+a)s-Be-i(b+?)s] 
M [r%, sl = (s + l)IAseise + B (s + l)ei(y+~)e + xBe-i@+a)e] / p 

where A and Bare complex functions of the transform parameter S. 
Let us also define 

Us= M[r2fj(r),s] = ifj(r)r’+ldr 
a 

(8) 

(9) 

Substituting (8) into the boundary. conditions (3) and relations (5), with (9) taken into 

account, yields a system of six linear algebraic equations. Solving these equations we obtain 

A, (s), B, (s) (p -= f,2,3) in terms of Uj (S) (i = I, . . .I 4). Substituting the values of -4, (s) 
and BP(s) into (8) and applying the transformation formula (7), we obtain from (4) 

(10) 

(1 + x4 v2* (r, e,+) = (1 + x2) v2” (r) + lim R, (r, e), a,<r,<b 
IS.&+0 

where 

R, (r, 0) = f f 2 Kqj (r, ro, 0) fj (rd dro, K,j (r, ro. 0) = 
c+b H,, (s, 0) ,;+I 

s ,&a _ &jns Fds, q=1,2; j=l I..., 4 (11) 
<‘]=I e--im 

2pL,iH,, = 11+ f 12’ - dI,+ - d, + dh + l,+ - lf - d,,+ -d,*+ 
2pzHI, = -11- f l,- - d,%- - d, - dl - I,- - IL- - d5,- - dG3+ 
H,, = I,- - I,- - 13- + 11- + d5,+ + d,,+ 
-iHI = l,+ + 12+ + ls+ - l,+ + IS,- - lS8- 

4ysH,1 = 11+ + &+ - dn+ - d, + x,dh + 1s’ + x,lc+ + d6,- + x,dss- 

-4p&H,, = I,- - I,- f d,,- + d, - x,d, + I,- - x,ll- + d5,+ - x,d,,+ 

2iH,, = -11- + I,- -l,- + x,1&- - &,+ + x,das+ 
2H,k = l,+ + 12’ + Is+ + x&f + db,- + x,dss- 
11’ = ml (s + 1) (s + 1 * 1) ell + [m, + m, (s + I)? eI, 
l,* = (s -t. 1 * 1) e13, l,* = ml (s + 1) (s + 1 * 1) es1 
l,* = m, (s + 1 f 1) / ezl, d12+ = d1 * d2, d,,* = d, f d, 

das = da rt ds, d, = ml (1 + x2) (s + 1) e,, 
dz = (1 + x2) elS, d, = ml (1 + x2) (s + 1) es1 
dk = ml (1 + x2) / eS1, d, = m, (s + I)% eS2, d, = m, (s + 1) ezl 

4 = (s + 1) ezl. & = 1 I ezp, ekp 6, 8, 0,) = ek 6, 0) ep (s, e,) 

(k, p =- 1, . . ., 4), e, = eire 
e2 _ e’(3f”)0 e3 =: emi3(ern, 

m, : (m -’ 1) / (xzm - I), 

e, = e-i(‘mb+Sn, 

m2 = (xl - mxa) 1 (x1 + m), 
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We compute the integrals in (11) by integration along the real axis. To do this we must de- 
termine the constant c in a strip in which the integrand functions are regular. The integrand 
functions are analytic functions of the complex parameter s, except at the points SjZj(jZ 

0, f 1, f 2,...) which are simple poles. Since Zij = o (r-=), Re(a)> 1 as r-+co and the 
residues of the integrand functions in (11) have the form r-(8j+8) therefore the constant c 
should vary within the limits -2 CC< -1. Let us set c= -1 kor simplicity. Then the 
substitution S= -1 -k iy reduces the integration in (11) to that along the real axis, i.e. 

(12) 

1 
*+1 

agj=Re~ ieH,j(s,e) 
I=--1 e--in18~_ p ++a I 

q=1,2 

j=l,...,4 

A1=m,+mlx,-i++x,, Az=m,-mm,-_, As=m,-mm,x,2+2x, 

The plus or minus sign in (12) is chosen according to the direction in which the pole s = -1 

is circumscribed, and the direction is determined as follows. We require the solution of the 
static problem posed to be a limiting case of the corresponding 

ImS ImS 

/i 

dynamic problem with the same boundary conditions (3), (4) when 

the spectral parameter or the inertial terms which we shall denote 

by a', tend to zero (E-+ 0). When e#O the denominator of the 
integrand expression in (11) assumes the form 

ReS AeS 
-f 0 -f 0 

exp [-in l/st - a21 - exp [in l/s2 - a21 

and sje = fl/sj'+ E' will be its zeros. From this it follows that, 
as E-PO. s= --1 from the 

{'P $'F 
the pole sje approaches the point 

right. To preserve the continuous character of the solution we 

must ensure that the contour of integration does not intersect the 

Fig.2 path of this pole (Fig.2). The plus and minus signs in (12) should 
be taken for r,>r and r. < r, respectively. Since 

--=$[I+ 0(+-l)], 5 
1 

r In (rolr) 
t$+ e-eu(cospy+isinpy)dy=ns(p)+~, (p=ln$-, E=e_eo) 

0 

where S(p) is the delta function,therelations (10) and (12) yield expressions for the charact- 

eristics of the stress-strain state of the composite plane at the lower edge of the inclusion 

in the form 

zrs (r, e. +) = z,tl@ (r) - h+G W + f flk) + ml%% 09 - h+b (4 + h+C?~(r) 

rso (r, e,, +) = letlo (r) + l,+G, (r) + +fz (r) - mlz-tl (r) - L+ta (r) + h+Q? (4 

(13) 



620 A. A. Evtushenko 

1 
G1 (r) = Znr (alp’63 - UI.T’C’), 

1 
Gz (r) = 2nr (m’C’ + axa’C*) 

1 
63 (r) = T (az;c’ -I- aza’c’), 64 (r) = rcr ’ (amY? - a23’P) 

b I, (rcl) Pi(~)=t~~kij(~,ro)fj(ro)dro, h(r)=+\bdro 
aj=I a 

where kij (r, ro) (i, j = 1, . . ., 4) denote the regular Fredholm kernels. The symbolism used to 
describe the remaining quantities follows, unless otherwise indicated, that of /l/. 

Substituting the expressions (13) into the conditions of interaction between an elastic, 
thin-walled inclusion and the surrounding medium /l/ leads to a system of singular integral 
equations of the first kind 

(14) 

Zj’ (r) = 5 fj (r0) dr0, j--l,... ,4, f3(r)=-k2f2fr). a,<r,<b 

where 

n 

AIF (r) = kJV, - 
aura CT) 
~-kklr,,‘(~)-k~~lIGa(r)-_ 

i\zF,(r)=p,[~-_+$---_G~(r)--~] 
1 + x2 

The normal stresses N, and displacements of the upper points of the face s= a relative to 
the lower points c, and d,, are computed using the approximate formulas from /l/. 

When the inclusion is perfectly rigid (E, = co), the equations (14) imply that f3 (r) = 
f4 (4 = 0, and we obtain 

(15) 

for determining the stress discontinuities. If on the other hand E. = 0, then (14) yield 

f, (r) = ,'P (r) = 0 and a system of equations describi&g the elastic equilibrium of the bounded 
half-planes made of different materials and containing a mathematical cut near the line of 

Since the index of the system (14) of singularintegral equation Ic = 1, its solution must 
contain four, real arbitrary constants determined from the supplementary conditions (6). We 
seek the solution of the integral equations (14) with singular Cauchy type kernels in the form 

fj (r) = g, (r) [(b - r)(r - a)]-‘/*, a < r < b, j = 2, . . ., 4 

where the unknown functions gj(r) are bounded in a closed interval [a, bl. Using the method 
of orthogonal polynomials f5/, we obtain from (14) a system of linear algebraic equations for 
determining gj (r) at specified nodal points, the latter being the roots of the first order 
Chebyshev polynomials. 

The normal and tangential component of the stress intensity coefficient are given by the 
formula 

-- 
Icz (a) + ikr (a) = lim 1/z (r - a) [%3 (r, 6) + i% (r, %)l = r_o_-O p-$5$1/2 (r -- a) [fl (4 -t if2 091 Iim 

P-a-D 
One case of elastic equilibrium investigated in detail is that of an aluminium-epoxide 

composite (E,/E, =22.2) containing an elastic, thin-walled inclusion of arbitrary relative 
rigidity E,j% I acted upon by a homogeneous stress field rlre (r, 0) = r2,a(r, 0) == 0, r,ee (r,O) = 'c,, 

Qje('* 0) = 'Iq at infinity. The inclusion of thickness 2h is situated on the segment 



(tl = e,, a < r < 6). The distance separating the center of the inclusion from the line d joining 
the materials of the half-planes and the length Za, of the inclusion are defined as follows: 

(a f b) 
d=~cosOO, 2n,=b--a 

The influence of the relative rigidity on the magnitude of the stress intensity coefficients 
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was studied for various values of the angle B0 of orientation of the inclusion 

&'(a) = k,,(a) / (5% vu& P =I,2 

where r,vrO is the stress intensity coefficient in an infinite plane with a crack of length 

Fig.3 

In the computations we assumed that d = 2ua, aolh = 10, v. = v1 = 0.3, 
Yz z 0.35. Fig.3 depicts the results obtained for the case of plane 

deformation. The curve I,2 and 3 correspond to the values E,/E,= 

O.Oi;iO; 100 of relative rigidity of the inclusion. We note that the 
values obtained for E,lE, = 0.01 differ from the corresponding results 
for a crack /2/ by not more than 3-4%. 

Basically, the computation consisted of finding the kernels 
kij(rvrn))t the latter representing semi-infinite integrals of the para- 
meter of integration y. The following procedure was used to in- 
crease the accuracy of the computations. The interval of integra- 
tion 0 to 00 was divided into two parts by defining the point Yo. 
The functions kij(r,r,) were then computed from 0 to YO using the 
Filon quadrature formulas /6/, while over the remaining range y0 to 
CO the integrand expressions were replaced by their asymptotic ex- 
pansions with y+m, the kernels k,j(r,ro) obtained in closed form. 
Numerical analysis has shown that the contribution of these last 
terms in kij(r, rO) becomes significant for an inclusion near (d < 2) 
the line along which the materials are bonded. Neglecting these 

contributions leads to erroneous results even at large (or the order of 200-400) values of 
?Jn . 

The author expresses his gratitude to D. V. Grilitskii who supervised the work. 
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